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Linear-eddy modelling of turbulent transport. 
Part 7. Finite-rate chemistry and multi-stream mixing 

By ALAN R. KERSTEIN 
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, USA 

(Received 18 July 1991) 

The linear-eddy turbulent mixing model, formulated to  capture the distinct 
influences of turbulent convection and molecular transport on turbulent mixing of 
diffusive scalars, is applied to two mixing configurations in homogeneous flow: a 
scalar mixing layer and a two-line-source configuration. Finite-rate second-order 
chemical reactions are considered, as well as the limits of fast reaction and frozen 
flow. Computed results are compared to measurements in a reacting-scalar mixing 
layer and in a two-line-source configuration involving passive-scalar mixing. For 
each configuration, the adjustment of a single model parameter related to the 
turbulence integral scale yields computed results in good agreement with a variety 
of measured quantities. The results are interpreted with reference to a simpler model, 
based solely on large-scale flapping effects, that  reproduces many qualitative trends. 
For three-stream mixing with finite-rate chemistry, a novel dependence of the 
reactant correlation coefficient on the chemical reaction rate is predicted. 

1. Introduction 
The linear-eddy modelling approach (Kerstein 1988, 1989, 1990, 1991 a, b ,  1992) 

was introduced in order to capture the principal mechanisms governing the turbulent 
mixing of diffusive scalars in a physically sound though approximate manner. The 
governing mechanisms, turbulent convection and molecular transport, are quite 
dissimilar in their influence on the mixing process. Convection rearranges the spatial 
location of fluid elements without changing their chemical composition. The 
chemical composition of a fluid element evolves by molecular transport (i.e. species 
exchange with neighbouring fluid elements) and by other molecular processes such as 
chemical reaction. 

To date, modelling approaches that lack full spatial resolution have not 
demonstrably captured these distinct influences in a robust, computationally 
affordable manner. Such models typically subsume all unresolved fine-scale 
mechanisms in a mixing submodel that does not preserve the aforementioned 
mechanistic distinction. This renders the treatment of Schmidt-number (Sc)  and 
related effects problematic, as discussed previously (Kerstein 1989, 1990). 

Direct numerical simulation based on the three-dimensional Navier-Stokes and 
species transport equations overcomes this difficulty, but at a cost that  is prohibitive 
for all but the simplest turbulent mixing configurations. The range of accessible 
problems has been increased by maintaining full spatial resolution but reducing the 
dimensionality, based on a dynamical equation such as the Biot-Savart vortex 
interaction law employed in the two-dimensional discrete-vortex method (Leonard 
1980). Though not an exact representation of three-dimensional Navier-Stokes 
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dynamics, such an approach can often capture the essential features of turbulent 
mixing in configurations of interest (Ghoniem, Heidarinejad & Krishnan 1989). 

The linear-eddy approach carries this strategy one step further by invoking a one- 
dimensional representation of the kinematics of turbulent convection. It is a 
kinematical rather than a dynamical approach because the convection process is 
represented by a postulated random process embodying inertial-range scalings 
rather than by a dynamical equation. The postulated random process, formulated in 
detail elsewhere (Kerstein 1991 b ) ,  is briefly summarized in $2. In  that reference, the 
approach is validated by means of comparisons t o  measurements of computed scalar 
power spectra, higher-order intermittency statistics, and other scalar fluctuation 
properties. The approach is shown to reproduce many microstructural properties 
of turbulent mixing fields such as scaling exponents governing power spectra and 
other multi-point statistics. 

This validation does not ensure that the model can reproduce concentration 
Statistics for spatially resolved species in flows with spatially varying mean 
concentrations due to, e.g. spatially inhomogeneous inlet concentration profiles or 
chemical reactions. I n  particular, for the case of turbulent plug flow with specified 
species concentration profiles in the inlet plane (transverse to the mean flow), one 
would ideally seek a formulation that could predict the species concentration 
statistics at any point downstream based on inlet conditions, physicochemical 
properties (kinematic viscosity v ,  species molecular diffusivities, reaction rates, etc.), 
and a gross characterization of the flow, namely mean velocity U ,  turbulence integral 
scale I, and turbulence Reynolds number Re (not necessarily the same as the nominal 
Reynolds number UZ/v). One could also seek to  predict multi-point concentration 
statistics. The linear-eddy approach has this capability, as noted earlier, but data 
comparisons considered here are limited to single-point statistics. 

Expressing streamwise development of the mixing field as time evolution based on 
x = Ut, the chemically reacting turbulent plug flow may be viewed as an initial-value 
problem or, more generally, as an initial-boundary-value problem if flow in a duct 
of finite cross-section is considered. The formulation of a turbulent mixing model 
that addresses this problem in its full generality, irrespective of the reliability of its 
predictions, is in itself challenging. Existing models typically cannot accommodate 
arbitrary inlet concentration profiles. For instance, particular models may address 
only two-stream mixing (i.e. all points on the inlet plane constrained to one of two 
chemical compositions) or only mixing of localized sources imbedded in a 
compositionally uniform background. For the special case of two-stream mixing of 
reacting species in turbulent plug flows with negligible transverse variation of mean 
concentration, simple zero-dimensional models successfully predict the dependence 
of product formation rates on stoichiometry and related parameters (Ma0 & Toor 
1971 ; Li & Toor 1986). 

A linear-eddy formulation is outlined in $ 2  that  is applicable to homogeneous 
turbulence with any inlet concentration profile and that depends on only one 
transverse coordinate. Some relaxation of these constraints is feasible, as demon- 
strated previously (Kerstein 1989, 1990). The model accommodates multiple 
species with different molecular diffusivities and finite-rate chemical reactions among 
the species. The model is applied to two configurations for which available 
experimental results allow detailed comparisons. For each configuration, the 
adjustment of a single model parameter related to the turbulence integral scale is 
found to yield computed results in good agreement with a variety of measured 
quantities. The results are interpreted with reference to a simpler model that is based 
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solely on large-scale flapping effects. That ‘flapping model ’ reproduces some but not 
all measured trends, thus indicating which mixing phenomena are sensitive to the 
additional mechanisms incorporated in the linear-eddy formulation. 

The computed results lead to a novel prediction, namely that the concentration 
correlation coefficient of two inlet species may be a non-monotonic function of the 
chemical reaction rate in a multi-stream mixing configuration. Suggestions are 
offered concerning additional measurements that would check the robustness of the 
model and provide further insight into turbulent mixing phenomena. 

2. Model formulation 
Linear-eddy modelling involves the Monte Carlo simulation of the time evolution 

of the scalar fields c,(y, t ) ,  indexed by species label j, on a one-dimensional domain 
from given initial conditions c,(y,O). The simulated evolution is governed by two 
processes, implemented concurrently, representing molecular and convective effects 
respectively. In the present formulation, the computational domain represents a 
transverse line initially in the inlet plane of a turbulent plug flow, convected 
downstream with the mean flow velocity U .  Time evolution of simulated realizations 
is interpreted as development of the mixing field along the streamwise coordinate x 
based on the relation x = Ut. Spatially resolved fluctuation statistics are developed by 
computing multiple realizations, yielding one scalar composition per realization at 
each (2, y )  location. Results reported here are typically based on 1000 realizations, 
giving a coefficient of variation of roughly l O O O - ~  w 3 YO for estimated quantities (or 
more for quantities such as higher moments that are especially sensitive to occasional 
large deviations from typical behaviour). 

Since transverse spatial structure of the mixing field is captured only in one 
direction, denoted y, applications are limited here to planar mixing fields, i.e. to 
mixing fields whose statistical properties are independent of the orthogonal Cartesian 
coordinate z. The modelling approach can also accommodate axisymmetric flows, as 
demonstrated elsewhere (Kerstein 1990). It is recognized that the instantaneous 
mixing field is nevertheless three-dimensional. The modelling challenge is to capture 
as much three-dimensional mixing phenomenology as possible in a one-dimensional 
formulation. Model representations of molecular and convective effects are 
considered in turn. 

Molecular effects are implemented deterministically based on numerical solution of 
the appropriate governing equations. The governing equations adopted in the 
present formulation are 

ac,/at = D , v ~ C ,  + w(c,, . . . , cn), j = 1, . . . , n (1) 

where D, is the molecular diffusivity of species j and the reaction-rate term w is a 
specified function of the n scalars cl, ... , c n .  The scalars may represent species 
concentrations, temperature, or any other physicochemical property of the fluid. For 
instance, density variations can be incorporated, though in a somewhat ad ?wc 
manner, as shown elsewhere (Kerstein 1992). In applications considered here, cj 
represents either a passive, diffusive scalar or a chemically reacting species. Fickian 
diffusion is adopted, although the modelling approach readily accommodates more 
general multicomponent diffusion. For clarity, the subsequent discussion is limited 
to the case of a single scalar, so the subscript on c is dropped and the molecular 
diffusivity is denoted D,. 

Convective effects are represented by a stochastic process consisting of a random 
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sequence of instantaneous ‘rearrangement events ’ that punctuate the ongoing 
deterministic solution of (1) .  These events are the model analogues of inertial-range 
eddies. Each event is a measure-preserving map of a randomly chosen segment of the 
computational domain onto itself. In  other words, the extent of the spatial domain 
over which the concentration of any species falls within the range (c,c+dc) is 
unchanged by the map. (Recall that  the density is taken to be constant.) The 
measure-preserving property assures that convection rearranges the spatial locations 
of fluid elements without changing their internal compositions. 

The measure-preserving property severely constrains the mathematical speci- 
fication of individual mapping events. Two alternative specifications have been 
employed in previous work. Of the two, the ‘triplet map’ and its generalization to  
higher ‘ tuplets ’ has been shown to provide the better mechanistic representation of 
the effect of an individual eddy on a scalar field. 

The triplet map, adopted here, is conveniently defined as a two-step process. First, 
the scalar field within the chosen segment is replaced by three compressed copies of 
the original scalar field within the segment. Each copy is compressed spatially by a 
factor of three so that the three copies fill the original segment. Second, the middle 
copy is spatially inverted. Graphical illustrations and a formal mathematical 
definition of this map, as well as a mechanistic rationale for this formulation, have 
been presented in Kerstein (1991 a, b) .  

Rearrangement events are taken to be statistically independent with respect to 
segment location and time of occurrence. Flow-field inhomogeneity with respect to 
the y-coordinate can be represented by allowing the mean event frequency and other 
parameters (specified shortly) that  govern the random process to vary with location 
y along the computational domain. Likewise, flow-field inhomogeneity with respect 
to the streamwise coordinate x can be represented by allowing the Wverning 
parameters to vary with computational time t in accordance with the aforementioned 
relation x = Ut. For present purposes, the flow field is treated as homogeneous with 
respect to all spatial coordinates. The rationale for this assumption is discussed with 
reference to  specific experimental configurations. 

The mean event frequency is characterized by a parameter A,  with units 
(length x time)-’, such that the frequency of occurrence of events with segment 
centres in any interval [y, y + d ]  is Ad. The size s of a given segment is randomly 
selected according to a segment-size probability density function (p.d.f.) f(s). The 
analogy between rearrangement events and inertial-range eddies motivates the 
specification of f(s) and the event-frequency parameter A. 

That analogy, developed in detail elsewhere (Kerstein 1991b), is based on the 
observation that the random sequence of maps induces a random walk of each fluid 
element. The associated diffusivity, 

D, = &A[: s”f(s) ds, 

is the model analogue of the turbulent diffusivity and the ratio Pe = D,/D, is the 
model PBclet number. In  applications considered here, Pe is set equal to its measured 
value for purposes of data comparison, thereby determining A for given f(s). 

To specify f(s), the model incorporates a scaling property based on the Kolmogorov 
cascade picture of inertial-range turbulence : namely, the diffusivity induced by 
inertial-range eddies of size s or less is proportional to sf. (Other values of the 
exponent have been used in previous work for purposes of sensitivity analysis.) The 
model analogue of the inertial range is the range L,  < s < L of allowed segment sizes, 
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where L,  and L are the model analogues of the Kolmogorov scale and the integral 
scale, respectively. Within this range, f ( s )  is chosen so that D, scales as sg for 
L ,  < s < L. Outside the allowed range, f ( s )  is set equal to zero. These re uirements, 
in conjunction with normalization of the p.d.f., give f ( s )  = &-i/(Lz-L-;)  for 

The lower bound on the range of segment sizes does not preclude the development 
of scalar fluctuations at  arbitrarily small lengthscales because each mapping event, 
however large the chosen segment, induces a three-fold compression of the scalar 
field within the segment. The sequence of mapping events during a realization 
induces lengthscale compression at an exponential rate. As in real flows, the scalar 
microscale in simulated realizations is governed by the overall balance between this 
convectively induced lengthscale compression and the smoothing effect of molecular 
diffusion. The fidelity of the model representation of these competing mechanisms is 
indicated by the good agreement with measured scalar spectral properties over a 
wide range of Sc (Kerstein 1991 b ) .  

It is convenient to  reparametrize the model in terms of the model analogues 
Re, = (L/L,)g and Sc, = (D,/D,)/Re, = Pe/Re, of the respective physical quantities 
Re and Sc. The aforementioned comparison of computed and measured spectral 
properties yielded the empirical relation Sc, = 0.51Sc, which is adopted here. Given 
the physical quantities Pe and Sc, the ratio L/L,  is determined through the 
relationships involving Re,. 

With the non-dimensional parameters of the model thus specified in terms of 
physical quantities, the connection to experimental configurations is completed by 
specifying two parameters involving length and time. Convenient choices are the 
molecular diffusivity D ,  and the model integral scale L. The definition of L is not 
equivalent to the operational definition of the measured integral scale 1. Therefore L 
is treated here as an adjustable parameter, chosen for each configuration so that the 
computed root-mean-square (r.m.s.) fluctuation c’ of a passive scalar c matches 
centreline measurements. 

Returning now to the more general case of multiple species undergoing finite-rate 
chemical reactions, the reaction-rate term in (1) and the molecular diffusivity 0, of 
each species must now be specified. (Scj is assumed proportional to D,, so all the D,, 
and Sc for one species, must be specified.) Applications considered here involve two 
reactants, labelled A and B, undergoing bimolecular reaction governed by 

9 
L ,  < s < L.  

w = -kc,c,. (2) 

For each application, the rate constant k is appropriately scaled to form a 
Damkohler number Da. 

The reported results are based on computations in which the spatial and temporal 
resolution are sufficient so that finite-sample variability (typically of order 3%, as 
noted earlier) rather than discretization error was the principal error source. 
Adequacy of resolution is verified by computing selected cases at  higher resolution. 
For the statistical quantities considered here, there are instances in which resolution 
much coarser than L K  is adequate, and instances in which resolution much finer than 
L K  is needed. As in laboratory experiments, computational resolution requirements 
depend strongly on the quantity being computed, as well as on flow conditions. For 
the configurations considered here, the typical run time per computed realization is 
one minute on a Cray XMP-24. 

The experiments being simulated were performed in ducted flows, but measure- 
ments were reported only for locations not subject to wall effects. Each 
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simulation is implemented on a finite y-interval with no-flux boundary conditions, 
and only maps whose segments are entirely contained within the domain are 
implemented. Consistent with measurement conditions, the domain is chosen to be 
large enough in each case that the reported results are not subject to boundary 
effects. Periodic boundary conditions like those adopted in previous applications 
(Kerstein 1991 b) would therefore be equally suitable. 

In  the flows considered here, temperature and pressure variations were small 
enough that density fluctuations could be neglected. Combusting flows in which 
thermal expansion influences the flow are addressed elsewhere using a model 
formulation that incorporates this effect (Kerstein 1992). 

3. A scalar mixing layer with finite-rate chemistry 
A turbulent reacting flow configuration that provides a useful characterization of 

chemical-kinetic effects is the reactive scalar mixing layer studied by Bilger, Saetran 
& Krishnamoorthy (199 1). Those investigators measured simultaneously the 
concentrations of the reactants nitric oxide (NO) and ozone (0,) at  various locations 
downstream of a turbulence-generating grid, with the respective reactants (diluted 
with air) introduced on either side of a splitter plate immediately upstream of the 
grid. The flow conditions, inlet concentrations, and physicochemical properties for 
the cases considered here are shown in table 1. 

NO and 0, undergo an exothermic bimolecular chemical reaction, forming NO, 
and 0,. At the concentrations indicated in table 1, the resultant temperature rise is 
small enough that it has negligible effect on the reaction rate or the flow field. The 
reactant molecular diffusivities are close enough to  each other that the concentration 
difference [NO] - [O,] is to a good approximation a conserved scalar, as confirmed by 
the measurements of Bilger et al. (1991). (Conserved-scalar analysis is presented in 
detail in that reference. Following their reference, the reactants NO and 0, are 
alternatively denoted A and B, respectively.) Thus, the concentration measure- 
ments yield the mixing statistics of a conserved scalar as well as those of reactive 
scalars for several Da values. Bilger et al.’s definition of Da is adopted here, namely 
Da = ICM (cAi+cBi)/U, where k is the bimolecular rate constant appearing in (2), M 
is the mesh spacing of the grid, and the subscript i denotes an inlet condition. 

The transverse coordinate y is referenced to the splitter plate. Positive-y and 
negative-y portions of the inlet plane (taken to be the plane of the turbulence- 
generating grid) correspond to feed streams containing reactants A and B 
respectively, with respective inlet-plane concentrations cAi and cni. I n  terms of these 
quantities, Bilger et al. reported measured fluctuation statistics of the normalized 
reactive scalars cA/cAi and cB/cni  and of mixture fraction, a normalized conserved 
scalar defined as c = ( c A - c B + c B , ) / ( c A i + c n , ) .  

Measurements were performed a t  two streamwise locations. The data comparisons 
shown here correspond to the location farther downstream, a distance x/M = 21 from 
the grid. This is not far enough downstream for relaxation of near-field effects of the 
grid and the splitter plate. Evidence of such effects in the experimental data is noted 
shortly. Nevertheless, useful data comparisons are possible, reflecting experimental 
design tradeoffs intended to optimize the characterization of finite-Da effects in a 
turbulent mixing process. 

I n  the simulations, k and fluid properties are assigned the values shown in table 1, 
based on values adopted by Bilger et al. in their data analysis. Additional simulations 
are performed with the molecular diffusivities of both reactive scalars set to 0.2 cmz/s 
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FrauRE 1.  Measured (+ )  and simulated ( x )  transverse profiles of the r.m.8. fluctuation c' of 
mixture fraction in the scalar mixing layer at x / M  = 21. (M is the mesh spacing of the turbulence- 
generating grid.) Owing to symmetry about the centreline (vertical line), measured (Bilger et al. 
1991) and simulated profiles are plotted with respect to - IyI and Iyl, respectively. The transverse 
location y is scaled by the local width S of the mean profile (c(y)), defined as the y-interval from 
( c )  = 0.1 to 0.9. 

Molecular properties 
D, of conserved scalar (cm2 9-l) 

D, of reactant A (cm2 s-l) 
D, of reactant B (cm2 8-l) 

Sc of conserved scalar 
rate coefficient k (ppm-' 9-l) 

Configuration 

Mixing layer Line source(s) 

0.20 0.20 
0.18 0.20 
0.22 0.20 
0.75 0.75 
0.39 n.a. 

Reactant concentration (p.p.m.) 
(two cases, Da in parentheses) : 0.7 (0.3) n.a. 

4.0 (1.8) 
Flow properties 

grid mesh spacing M (cm) 32 2.5 
mean flow velocity U (cm s-l) 55 700 
turbulent diffusivity D, (cm2 s-l) 150 8.89 
turbulence integral scale 1 (cm) 
a t  indicated distance from grid (in 
parentheses), in units of M 20 (21) 1.02 (20) 

1.35 (52) 
TABLE 1. Characteristics of the experimental configurations considered here, the scalar mixing 
layer of Bilger et al. (1991) and the continuous-line-source configuration of Warhaft (1984). The 
concentrations of reactants A and B (nitric oxide and ozone, respectively) are equal for each 
indicated case. The turbulent diffusivity is deduced from measurements, as discussed in the text. 
Molecular properties are based on a nominal temperature of 25 "C. 

to assess the importance of differential molecular diffusion of the reactants. 
Consistent with experimental inference, the effect is found to be negligible in all 
instances, so the equal-diffusivity results are not reported here. In addition to the 
reactive scalars, a conserved scalar with molecular diffusivity 0.2 cm2/s and with the 
same inlet profile as species A is simulated. The model parameter Sc, is determined 
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FIGURE 3. Measured (+ ) and simulated ( x ) transverse profiles of mixture-fraction kurtosis K 
in the scalar mixing layer a t  z / M  = 21. Format and definitions as in figure 1. 

by adopting thc cmpirical relation ScS = 0 . 5 1 8 ~  (scc $2). As noted in $2, empirical 
determination of the two contiguration-specific model parameters D, and L is also 
required. 
D, is deduced from the measured spread of the mean mixture-fraction profile 

(c(y)) at  x / M  = 21. The measured profile approximates the error-function form 
predicted by turbulent-diffusion theory (Libby 1975) and confirmed by previous 
measurements (LaRue & Libby 1981 ; Ma & Warhaft 1986). The transverse spread 
of the profile, characterized by its variance cr2. determines D, according to the 
relation cr2 = 2D,t = 2D,x/U governing a Fickian diffusion process with constant 
D,. The value D, = 150 cm2/s is thus obtained. 

In  fact, other measured properties indicate that D, varies strongly with x and that 
it is higher than found previously (LaRuc & Libby 1981; Ma & Warhaft 1986), 
perhaps reflecting the influence of the splitter plate or other near-field effects. These 
complications could only be addressed computationally by a multidimensional 
numerical model that simulated the flow field, as well as the scalar mixing field, in 
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FIGUIW 4. Transverse profiles of mean concentration {c), scaled by inlet concentration ci, in the 
scalar mixing layer at x / M  = 21 for Da = 0.3 (n), 1.8 (A), co (-) and 0 (---). Filled symbols: 
measured NO profiles (Bilger et al. 1991). Open symbols; simulated 0, profiles. Fast-chemistry and 
frozen-flow profiles for NO are based on conserved-scalar measurements ; those for 0, are based on 
conserved-scalar simulations. 

detail. The simplifying assumption adopted here assures agreement of the simulated 
mean mixture-fraction profile with the measured profile a t  x /M = 21, but the 
kinematical process by which that final state is reached is not emulated with 
quantitative precision. The quantitative impact of this simplification will be 
discussed. 

As mentioned in $2, the parameter L is adjusted so that the centreline value of c‘, 
the r.m.s. fluctuation of mixture fraction, obtained by simulation matches the 
measured value. The value L = 2.51, adopted in all scalar-mixing-layer computations 
reported here, yields the c’(y) profile that is shown, alongside the measured profile, 
in figure 1 .  It is reasonable that L determined in this manner is larger than 1 because 
L is the size of the largest possible eddy in the simulation, while 1 is the size of a 
‘typical’ large eddy in the flow. The ratio L / l  is not considered to be a universal 
constant because the operational definitions of 1 in different flows are not always 
equivalent. A markedly different value of the ratio is obtained for the flow considered 
in $4.1. 

The measured profiles of c‘, and of mixture-fraction skewness and kurtosis shown 
in figures 2 and 3, exhibit off-centreline local extrema not seen in previous 
measurements. These features presumably reflect the complicating factors, men- 
tioned earlier, that are not represented in the simulation. Apart from the lack of 
these features, the simulation is seen to  yield mixture-fraction statistics in good 
overall agreement with measurements. (The vertical differences between pairs of 
simulation points reflect statistical variability due to  the finite number of simulated 
realizations. As in laboratory flows, individual realizations are asymmetric although 
ensemble-average profiles of even and odd moments are symmetric and anti- 
symmetric, respectively.) 

Results for the reacting species are presented in figures 4-8. In  those figures, 
symbols denote finite-Da results. In figures 4-7, curves (solid and dashed, 
respectively) denote results for the limiting cases Da = 00 (fast chemistry) and 
Da = 0 (frozen flow). Results for the limiting cases are based on expressions given by 
Bilger et al. (1991) that  relate the fluctuation statistics in those limits to mixture- 
fraction statistics. 
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FIGURE 5. Transverse profiles of r .m.s. fluctuation d of reactant concentration, scaled by inlet 
concentration c,, in the scalar mixing layer at x/M = 21 for Da = 0.3 (O), 1.8 (A), and 03 (-). 
Notation as in figure 4. For both species, the frozen-flow limit Da = 0 corresponds to the mixture- 
fraction fluctuation profiles plotted in figure 1. 
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FIUURE 6. Covariance (c; c',) of reacting species, labelled A and B, scaled by inlet concentrations 
c,, and cB,, in the scalar mixing layer at  x / M  = 21 for Da = 0.3 (O), 1.8 (O) ,  co (-), and 0 (---). 
Left of centreline : measurements (Bilger et al. 1991) ; right of centreline: simulations. 

1.0 I I 

-0.5 0 0.5 

YI6  
FIGURE 7. Correlation coefficient p of reacting species in the scalar mixing layer at  x/M = 21 for 
Da = 0.3 (o), 1.8 (O) ,  and 03 (-). Filled symbols: measurements (Bilger et aZ. 1989); open 
symbols and curve: simulations. (For the case Da = 0, p is identically equal to - 1.) 



Linear-eddy modelling of turbulent transport. Part 7 299 

1 .o 

0 0.5 
CB,  

0 0.5 1 .O 
Mixture fraction 

FIQURE 8. Scaled mean concentration (c,)/c,, of 0,, conditioned on mixture fraction, in the scalar 
- mixinglayeratx/M - .. = 21. AllresultsareforDu = 0.3.Simulations: y/6 = -0.4(A), -O.Z(V),O(O), 
0.2 (a), 0.4 ( x ). ---, Measurements (Bilger et al. 1989); -, computed lower bound based on 
instant mixing to the indicated mixture fraction followed by chemical reaction for a time interval 
x / u .  

In figures 4 and 5 ,  measured profiles are shown for NO and simulated profiles are 
shown for 0,. Since the inlet species have nearly equal diffusivities and inlet 
concentrations for the cases considered, measured statistics of NO at given y match 
those of 0, at  - y to within experimental precision. The same holds for computed 
statistics. Thus, agreement between computations and measurements is indicated if 
corresponding profiles are mirror images with respect to the transformation y + - y .  

It is evident in figure 4 that computed mean concentrations for finite Da exceed 
measured values, especially near the centreline. This difference between computed 
and measured concentrations is to be expected because decaying turbulence is here 
being modelled as stationary turbulence. Recall that D, and L are held constant, 
neglecting observed streamwise variation, particularly the decay of D,. The method 
for determining the model parameter D, gives a result that is smaller than the true 
value near the grid but larger than the true value farther downstream. The net 
impact is that species are mixed sooner in the real flow than in the simulation, so the 
true extent of reaction is greater than the computed result at  x/M = 21. 

In the frozen-flow limit, the model reproduces (to within computational precision) 
the error-function profile corresponding to a diffusion process with diffusivity D, 
acting on the initial profile for a time x / U .  This reflects the fact that the random 
sequence of rearrangement events induces a diffusion process, as mentioned in $2 and 
demonstrated previously (Kerstein 1991 b) .  (Molecular transport may modify the 
effective diffusivity, Saffman 1960, but the effect is not statistically significant at Pe 
values of interest here.) 

The difference between computed and measured r.m.s. concentration profiles in 
figure 5 can be attributed to the approximate representation of convective stirring 
in the model. The model appears to capture the principal qualitative trends and to 
give quantitative results within 40 YO of measured values. 

The scaled concentration covariance of species A and B is shown in figure 6. 
Because of the aforementioned reflection symmetry, this quantity is an even function 
of y ,  so measured results for y < 0 and computed results for y > 0 are plotted. The 
measurements exhibit off-centreline peaks for the two lowest Da values. This featurc 
is not reproduced by the computations. 
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An alternative normalization of the covariance yields the correlation coefficient 

p = < c a  c'B>/(ca C k ) ,  (3) 

plotted in figure 7. (The term <cacl,> denotes the covariance of cA and cB,  but the 
quantities c> and c i ,  not enclosed in angle brackets, denote the r.m.s. fluctuation of 
the respective species concentrations.) For the frozen-flow limit of two-stream 
mixing, p = -1 .  Figures 6 and 7 both indicate monotonic dependence on Da. 
Monotonic dependence is not, however, a mathematical requirement. I n  $4, 
computed results predicting non-monotonic dependence on Da in a three-stream 
mixing configuration are presented. 

It appears that  the model performs better with respect to species correlation 
statistics (figures 6 and 7 )  than with respect to fluctuation statistics of individual 
species (figure 5 ) .  A comparable outcome is obtained in $4 for a different configuration 
involving multistream mixing of non-reacting scalars. These results may reflect the 
mechanistically sound representation of molecular processes in the model. Species 
correlation statistics reflect intermixing, which is necessarily mediated by molecular 
diffusion. I n  contrast, fluctuations of individual species concentrations are induced 
by convective stirring, with molecular diffusion serving to dissipate fluctuations. 
Whatever the underlying explanation, it is noteworthy that the correlat,ion statistics, 
which are directly related to chemical reaction rates, can be predicted with relatively 
good accuracy. 

In  figure 8, the scaled mean concentration of O,, conditioned on mixture fraction, 
is plotted for five transverse locations. Computed results indicate that the conditioned 
mean is insensitive to transverse location, in accordance with the measurements of 
Bilger, Krishnamoorthy & Saetran (1989). Since their measurements a t  the same set 
of transverse locations collapse to a single curve, their data are plotted as a curve in 
figure 8. Also shown is the curve corresponding to instant mixing at  x = 0 to the 
indicated mixture fraction, a lower bound on the finite-rate-mixing cases. 

Bilger et al. (1989) note that the collapse of the conditioned mean may be a useful 
property for modelling purposes because the transverse variation of species 
concentrations can be subsumed into a dependence on mixture fraction. This collapse 
is to  be expected because fluid elements undergo large transverse displacements on 
a timescale shorter than the timescale for chemical reaction. Thus, conditional 
averages of reactant concentration a t  various y-locations for given mixture fraction 
are, in effect, based on the same population of fluid elements. 

A surprising aspect of the measured curve is its proximity to the lower bound. In  
fact, the measured joint p.d.f. of species A and B is found to extend below the 
corresponding lower bound for that quantity (Bilger et al. 1991), suggesting that the 
conditional p.d.f. of cB would extend below the bound in figure 8. A possible 
explanation is that  the experimental configuration is not strictly a plug flow ; namely, 
some fluid parcels at given x may have been residing in the flow for a time longer than 
x/U. Since the model is based on plug flow, it excludes this possibility and gives joint 
and conditional p.d.f.'s (not shown) that do not extend below the corresponding 
bounds. 

Summarizing the foregoing comparisons, i t  is found that the model captures the 
principal trends and features exhibited by species concentration statistics in the 
reacting-scalar mixing layer. Some differences that have been noted may be 
attributable to near-field influences, such as the effect of the splitter plate, not 
reflected in the model. Despite such complications, the measurements provide a 
useful basis for assessing Da effects. 
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With regard to conserved-scalar mixing, the experimental configuration considered 
next is advantageous in that the scalar is introduced in a minimally intrusive manner 
well downstream of the grid, thereby avoiding near-field influences, and the inlet 
profile allows the development of a richer mixing phenomenology. 

4. Mixing downstream of continuous line sources 
4.1. A single line source 

The first application of the linear-eddy modelling concept was to the development of 
the concentration field downstream of a continuous line source in homogeneous 
turbulence (Kerstein 1988). Here, the formulation outlined in $2 is applied to single- 
line-source and two-line-source configurations. Computed results for both con- 
figurations are compared to the measurements of Warhaft (1984). Pertinent 
characteristics of the experiment are shown in table 1. Adopting Warhaft’s notation, 
the source(s) are in a transverse plane a distance xo downstream of a turbulence- 
generating grid. In the terminology of $2, the plane containing the source(s) is the 
inlet. Streamwise and transverse coordinates referenced to a source are denoted x’ 
and y’, respectively. All single-source statistics are even functions of y’, so all 
measured and computed transverse profiles are plotted on the half-line y’ > 0. For 
the two-source configuration, the sources are parallel, separated by a distance d ,  and 
the transverse coordinate y is referenced to the line midway between the sources. For 
this configuration, transverse profiles are plotted on the half-line y > 0. 

As in the mixing-layer application, homogeneous, stationary turbulence is assumed 
in the simulations, but now, one aspect of flow-field development is incorporated. 
Simulations corresponding to configurations with two different values of xo are 
performed. In each case, the turbulence integral scale is based on measured flow-field 
properties at the corresponding value of xo. 

There is an empirical basis for this approach. With regard to the evaluation of DT, 
Sirivat & Warhaft (1983) measured the streamwise profile of D,  in the same 
apparatus used in Warhaft’s (1984) line-source measurements, but with a uniform 
transverse scalar gradient introduced in the inlet plane (their ‘toaster ’ configuration). 
They observed only a mild (roughly 20%) variation of D, over the streamwise range 
considered here, so a representative value D, = 8 cm2/s is adopted. For application 
to the line-source measurements, it should be noted that D, was measured in a flow 
with mean velocity U = 630 cm/s, while the flow velocity for the line-source study 
was U = 700 cm/s. The measured D, value is therefore multiplied by 700/630, 
reflecting an assumed proportionality to U .  (Roughly the same factor is obtained if 
proportionality to the measured r.m.s. velocity fluctuation u is assumed). Thus, D, 
is assigned the value 8.89 cm2/s in the simulations, giving Pe = 44.4 (based on 
D, = 0.2 cm2/s). 

This value of Pe indicates that the flow does not correspond to turbulent mixing 
with a fully developed inertial-convective spectral subrange. Nevertheless, the 
formulation of $2, based on fully developed inertial-range turbulence, is used for data 
comparisons. The impact of these considerations on a mechanistic interpretation of 
the results is discussed in $4.2. 

The measured turbulence integral scale 1 is a more rapidly varying function of x 
than is DT. Nevertheless, Warhaft ( 1984) found that measured x-dependences of 
transverse profile widths and of species correlation coefficients for configurations 
with different xo exhibit excellent collapse if the transverse coordinate is scaled by 
Z(xo) in each instance. Thus, mixing statistics within the streamwise range of the 
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FIGURE 9. Centreline (y’ = 0) fluctuation intensity c’/(c) downstream of a single line source. z’ is 
distance from the source; M is the mesh spacing of the turbulence-generating grid. Measurements 
(Warhaft 1984) correspond to wires of diameter 0.025 mm (A) and 0.127 mm ( x ) located at 
x,/M = 52 relative to the grid. -, Linear-eddy model ; ---, flapping model. 

measurements are consistent with the assumption that flow-field parameters for each 
case are fixed at inlet-plane values. On this basis, the model parameter L is held 
constant in each simulation, with a value proportional to the measured integral 
scale Z(z,,). The constant of proportionality is adjusted to obtain the best fit of 
the simulated centreline (y’ = 0) fluctuation-intensity profile c’(x’)/(c(x’)) to 
measurements. 

The simulated curve giving the best fit, corresponding to L = 5.61, is compared in 
figure 9 to measurements downstream of a line source a t  xo /M= 52. In the 
experiment, the scalar was introduced by means of a heated wire. Results based on 
two different wire diameters are shown. Results based on the smaller wire are more 
representative of the ideal line source, not only because flow disturbance is reduced, 
but also because concentration statistics are sensitive to the transverse span of the 
scalar source (Sawford & Hunt 1986; Thomson 1990). In  the simulations, the scalar 
source was introduced in a single cell of the computational domain. For some of the 
near-field statistics discussed shortly, spatial resolution considerably finer than the 
Kolmogorov scale L,  was required in the simulations in order to obtain results 
corresponding to the ideal line source (as indicated by insensitivity of computed 
results to further increase of resolution). 

Also shown in figure 9 is a computed curve based on the ‘flapping model ’ presented 
in the Appendix, so named because it is based solely on random, rigid displacements 
of the entire concentration field, omitting any mixing effects per se. To the extent 
that this simple model accounts for experimental or computational results, those 
results may be viewed as manifestations of large-scale motions rather than the 
mixing process. In  a previous application of the flapping model to the scalar mixing 
layer, the model was found to agree remarkably well with measured scalar 
fluctuation statistics (Kerstein 1991 c). 

The flapping model involves one adjustable parameter, the r.m.s. displacement m, 
which is adjusted to fit the linear-eddy fluctuation-intensity profile in the far field. 
(As indicated in figure 9 and discussed in the Appendix, the flapping model fails in 
the near field, giving diverging rather than vanishing fluctuation intensity.) For this 
purpose, the linear-eddy simulations are implemented over a streamwise interval far 
exceeding the domain of the measurements. Figure 10 shows the far-field best fit to 
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FIQURE 10. Centreline fluctuation intensity downstream of a single line source. -, Linear-eddy 
model ; ---, flapping model. Upper and lower pairs of curves correspond to line-source locations 
x,/M = 52 and 20, respectively. 
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Figure 11.  Half-width y; of the transverse profile of mean concentration, normalized by the 
integral scale I measured at x,/M. Measurements (Warhaft 1984): z,/M = 52 ( x ), 20 (A). 
Linear-eddy simulations : x,/M = 52 (-), 20 (---). 

linear-eddy simulations for the case x,/M = 52. This fit gives m = 2.41. (The flapping 
model is fit to the linear-eddy model rather than to the experimental data in order 
to provide a consistent basis for comparison of the two models.) Figure 10 also shows 
results for both models for the case x,/M = 20 with the fitted coefficients of 
proportionality unchanged. These comparisons indicate that the flapping model 
provides an excellent quantitative characterization of the linear-eddy far-field 
fluctuation intensity. 

The half-width y;(x’), defined as the y’-location a t  which the mean concentration 
is half its centreline value, provides a gross characterization of the growth of the 
plume downstream of the scalar source. Figure 11 indicates that the simulated 
streamwise development captures the sigmoidal trend of the experimental data, but 
that the inflexion point occurs a factor of three too far downstream. The mechanistic 
basis of the sigmoid was discussed in an earlier modelling study of this configuration 
(Kerstein 1988). This feature is a manifestation of transitions between three plume- 
growth regimes, characterized by the elapsed time from origination at the source : (i) 
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FIGURE 12. Half-width y; of the transverse profile of r.m.s. concentration fluctuation, normalized 
by the integral scale 1 measured at x o / M .  Measurements (Warhaft 1984): xo/M = 52 ( x ), 20 (A). 
Linear-eddy simulations : x, /M = 52 (-), 20 (---). 

molecular-diffusive growth during an elapsed time of the order of the Kolmogorov 
time t ,  = Lk/v ,  (ii) convective growth from t, until a time of order t, = L 2 / D ,  (the 
'large-eddy turnover time '), and (iii) turbulent-diffusive growth thereafter. In  
regimes (i) and (iii), diffusive growth of the form y; - x'i is obtained, with diffusion 
coefficients D, and D,, respectively. In regime (ii) ,  the size of the eddy whose turnover 
time equals the elapsed time t = x ' /U is of order ( t / t K ) ' L K ,  based on inertial-range 
scaling (Tennekes & Lumley 1972). In the model, the typical size of the largest 
mapping segment affecting the plume in this regime is likewise of this order. Because 
eddies are represented by instantaneous mapping events in the model, this size 
determines the typical plume width in regime (ii), yielding t; scaling (Kerstein 1991 b ) .  
In contrast, real eddies are continuous processes in time, so throughout regime (ii) 
the plume undergoes a transverse convective displacement of order w t .  (w is the 
transverse r.m.s. velocity fluctuation, here interpreted as the typical transverse 
velocity of a large eddy.) This displacement is the dominant plume growth 
mechanism in regime (ii), yielding the classical linear growth in this regime. 

This analysis indicates that the instantaneous nature of mapping events in the 
model impacts the representation of the early development of the mixing field, during 
which the finite time duration of eddies plays an influential role. This artifact of the 
model, analysed elsewhere in more detail (Kerstein 1991 b ) ,  is clearly evident in data 
comparisons involving transverse profiles of r.m.s. concentration fluctuation. Figure 
12 shows measured and simulated half-widths of those profiles. The cause of the 
underprediction of profile width in the intermediate regime is evident from 
examination of the profiles plotted in figures 13 and 14. 

The simulated profiles in the near field are characterized by steep shoulders 
transitioning to broad tails. These features reflect the dichotomy between the profile 
width for a typical realization (as characterized by the half-width) and the width 
based on the second moment of the profile with respect to  y', As the broad tails 
suggest, the second-moment width greatly exceeds the half-width. The width based 
on the second moment is of order (DTt)f for all t > t, because the random sequence 
of mapping events constitutes a diffusion process on the transverse line with diffusion 
coefficient D,  (Kerstein , 199 1 b)  . 

The cause of this artifact is again the instantaneous nature of mapping events. 
The relatively infrequent occurrence of events of segment size much greater than 
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FIGURE 13. Transverse profiles of r.m.s. concentration fluctuation c’, normalized by centreline 
values, for x,/M = 52. y’ is transverse distance from the source. Measurements (Warhaft 1984) : 
x‘/M = 0.36 (A), 1.0 ( x ), 3.8 (0). Curves are linear-eddy simulation results for the same x’ /M 
values. (Height of the tails increases with increasing d.) 

1.5 

1 .o 
C, 

CCL 

- 

0.5 

0 

FIGURE 14. Transverse profiles of r.m.s. concentration fluctuation c’, normalized by centreline 
values, for x, /M = 52. Measurements (Warhaft 1984): x‘/M = 30 (A), 100 (+). Solid and dashed 
curves are linear-eddy and flapping-model results, respectively, for x‘ /M = 30, 100, 200, and 500. 
(Height of the curves increases with increasing d.) 

(t/t,)g L ,  during an elapsed time t is the dominant mechanism determining the 
second-moment width, but does not contribute to the half-width. I n  real flows with 
eddies of finite time duration, this dichotomy is absent. 

Figure 14 indicates an eventual transition from this behaviour to the emergence of 
an off-centreline peak of the r.m.s. fluctuation profile. Figure 15, showing far-field 
measured and simulated profiles for a different value of x,JN, indicates improved 
performance of the model in the far field, with the off-centreline peak developing 
roughly conforming to measurements. The flapping-model profiles shown in figures 
14 and 15 indicate that the far-field qualitative behaviour can be interpreted simply 
as a manifestation of flapping. An interpretation has also been proposed based on 
stretching and eventual molecular blending of lamellae near the centreline containing 
relatively high concentration gradients (Kerstein 1988). 

Flapping-model profiles are omitted from figure 13 because they are essentially 
horizontal on the scale of that  plot. The widths of these profiles are much larger than 
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FIQUHE 15. Transverse profiles of r.m.8. concentration fluctuation c’, normalized by centreline 
values, for x,/M = 20. Measurements (Warhaft 1984): x’/M = 17 (A), 63 (a), 133 ( x  ). Solid and 
dashed curves are linear-eddy and flapping-model results, respectively, for x’ /M = 17,63, 133, and 
200. (Height of the curves increases with increasing x’.) 

1 .o 

0.5 

P 
0 0  

-0.5 

_._....._..__._......... ... 

-1.0 
0 10 20 30 

( X ’ l d )  (4 v) 

FIQURE 16. Species correlation coefficient p versus normalized coordinate (x’ld) (u /U) ,  where d is 
the separation of the two line sources, U is the mean flow velocity, and u is the streamwise r.m.8. 
velocity fluctuation. Measurements (Warhaft 1984): d/Z = 0.5 ( x ), 2 (+), 8 (A). Solid and dotted 
curves are linear-eddy and flapping-model results, respectively, for the corresponding d/Z values, 
for x,/M = 52. Dashed and chain-dashed curves are linear-eddy and flapping-model results, 
respectively, for d / l  = 2, x,/M = 20. 

measured values, reflecting the aforementioned failure of the flapping model in the 
near field. 

Finally, it is noted that simulation results shown in figures 11 and 12 for different 
values of xo/M do not collapse as precisely as measured quantities on the scaled plots. 
Since the mechanistic basis of the collapse of the experimental results is unclear, no 
interpretation is attempted except to note that the sensitivity to x,JM does not have 
a great impact on the predictive capability of the model. 

4.2. Interference of two line sources 

For the experimental configuration consisting of two parallel heated wires separated 
by a distance d ,  both a distance xo downstream of the grid, Warhaft (1984) performed 
the thermal analogue of the following measurement. Suppose that the wires are 
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FIQURE 17. Transverse profiles of species correlation coefficient p for z, /M = 20. y is transverse 
distance referenced to the line midway between the two sources. Measurements (Warhaft 1984) : 
d = 1.2 mm (A), 8 mm ( x ), 14 mm (O), 35 mm (+). Solid and dashed curves are linear-eddy and 
flapping-model results, respectively, for the corresponding d-values. (ad): x'/M = 17, 33,93, 133. 

equal-intensity sources of distinct, equal-diffusivity species A and B, respectively. By 
combining results for the one-wire and two-wire configuration, Warhaft obtained the 
correlation coefficient p, given by (3), at various downstream locations x' and 
transverse locations y relative to the line midway between the wires. 

Measurements were reported for values of xo/M ranging from 5 to 60 and for d / l ( x o )  
ranging from 0.075 to 10. For given d/Z(xo), measured centreline (y = 0) streamwise 
profiles of p exhibit excellent collapse over the range of xo/M values when plotted 
with respect to the 'normalized convective time' [x ' ld ]  [u(x,)/U], where u(xo)  is the 
streamwise r.m.8. velocity fluctuation measured at  xo. Therefore, the experimental 
results plotted in figure 16 include data reported for all xo/M values, not just the 
values 20 and 52 for which simulations are performed. (Simulation results exhibit 
some sensitivity to xo/M, but not so large as to have an impact on the data 
comparisons.) Three representative values of d / l (x , )  are selected for data comparison 
in figure 16. Measured and simulated transverse profiles of p for other values of 
d/Z(zo) are shown in figure 17. 

The overall agreement of simulated results with measurements is good, roughly 
comparable to the performance of the particle-pair dispersion model applied to this 
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FIGURE 18. Species correlation coefficient p versus normalized coordinate (x ' /d )  ( u / U ) ,  based on 

linear-eddy simulation, for x,/M = 52, Da = 0 (solid), 2.7 (chain-dashed), co (dashed). 

configuration by Thomson ( 1990). Remarkably, the flapping model reproduces the 
principal qualitative trends. I n  figure 16, i t  reproduces the dependence of the far-field 
asymptote, the rate of convergence to the asymptote, and the minimum value of p 
on d/Z(x,). I n  figure 17, it reproduces the dependence of the transverse width of the 
profiles on d/Z(x,) and on x'/M. 

Thus, one is not compelled to invoke mixing mechanisms to  interpret the trends, 
though the correlation coefficient is presumably sensitive to the mixing process. The 
quantitative as well as qualitative agreement of both the linear-eddy model and the 
particle-pair dispersion model with the measurements is, ostensibly, evidence of that  
sensitivity. However, both models are based on high-Re phenomenology whose 
applicability to this moderate-He flow is problematic. It is remarkable that these 
mixing models nevertheless yield accurate predictions for this configuration. This 
result is consistent with the observation in $ 3  that the correlation statistics of 
reacting species are well characterized by the linear-eddy model. 

4.3. Multi-stream mixing with jinite-rate chemistry 
The foregoing results do not assure that either the particle-pair dispersion model or 
the linear-eddy model adequately characterizes all aspects of the two-line-source 
configuration. I n  particular, recognizing that the experiment was partly motivated 
by its implications for turbulent reacting flows, i t  is of interest to  consider how p is 
affected by a finite-rate chemical reaction between species A and B. This three- 
stream mixing problem (the streams being the two sources and the inert background) 
has the potential to  exhibit qualitatively different Da dependences than two-stream 
mixing problems such as the scalar mixing layer. This possibility is indicated by the 
fact that  the spatial dependence of p in the frozen-flow limit considered in $4.2 
exhibits a rich phenomenology, in contrast to the mathematical requirement p = - 1 
for two-stream mixing of non-reacting species. 

Simulated results for cases involving chemical reaction as well as frozen flow 
are shown in figures 18 and 19. Inlet conditions and flow parameters correspond 
to the case x,/M = 52, d/Z(x,) = 2. Thus, the frozen-flow streamwise profile plotted 
in figure 18 is the same as the profile of figure 16 for this case. Chemical reaction is 
introduced by incorporating the bimolecular reaction-rate expression, (2), into 
(1) governing molecular effects. A suitable definition of Da for this configuration is 
Da = k(cAi+cBi) A l U ,  where the assumed inlet condition is a uniform concentration 
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FIGURE 19. Transverse profiles of species correlation coefficient p,  based on linear-eddy simulation, 

for x,/N = 52, Da = 0 (solid), 2.7 (chain-dashed), co (dashed). (a ,  b )  : x'/M = 100, 500. 

cAi of species A over the interval t (d - A )  < y c $(d + A )  and a uniform concentration 
cBi of species B over the interval i ( - - d - A )  < y < + ( - d + A ) .  The two inlet 
concentrations are taken to be equal, with their common value denoted ci. Ideal line 
sources correspond to the limit A - to  with the product c iA,  determining the inlet 
species fluxes, held fixed. As in $4.2, A is chosen to be the width of a single cell of the 
discretized computational domain, with resolution sufficient to eliminate finite- 
source-size effects. Since (1)  and (2) governing molecular processes are linear with 
respect to each reactant, the simulated evolution depends only on the product kci A 
in the ideal-line-source limit, so only Da need be specified. (More general, nonlinear 
forms of the molecular governing equations would involve additional dependence on 
ci. In that situation, a suitable choice of k might be the value corresponding to the 
NO-0, reaction, with ci A then determining Da.) Simulated results for Da = 2.7 and 
co are compared in figures 18 and 19 to the frozen-flow case. 

An interesting feature of the results is the occurrence of non-monotonic dependence 
of p on Da. Though mathematically possible for two-stream as well as multi-stream 
mixing, this feature is not found in the experimental or computational results for the 
two-stream configuration examined in $3. 

Other features apparent in figure 19 indicate the sensitivity of Da effects to aspects 
of the mixing process. In frozen flow, p is positive a t  large y because species that are 
intermixed near the centreline remain intermixed as they are transported far from 
the centreline. The flow at large y can be characterized as intermixed patches 
dispersed in a background devoid of either species, giving a correlation coefficient 
that converges to a positive constant as the volume fraction of the intermixed 
patches vanishes. With chemical reaction, however, the deficient reactant in each 
intermixed patch is eventually depleted, leading to small patches containing one or 
the other reactant. This gives a negative correlation coefficient. Furthermore, if the 
volume fraction of these patches is of order of B 4 1, then it follows from the 
definition of p that p is of order --E. Hence the vanishing of p for large y in the 
chemically reacting cases. 

This scenario also implies that, at  given y far from the centreline, p should be more 
negative with increasing Da. The computed curves of figure 19(a) for Da = 2.7 and 
co do in fact cross over at  large y and the fast-chemistry curve becomes more 
negative. The magnitude of the effect, though small, is statistically significant 
because the simulated flow fields are identical in the two cases. (The y-span of the 
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computational domain is not sufficient to demonstrate the large-y crossover of the 
profiles of figure 19 (b ) ,  corresponding to a transverse plane farther downstream, but 
the trend suggests an eventual crossover.) Thus, p becomes monotonic in Da where 
the underlying mixing mechanism requires this result, but is non-monotonic in the 
region where the greater complexity of the mixing process allows non-monotonicity. 

These predictions indicate that measurements of Da effects in multi-stream mixing 
configurations would be valuable because qualitative trends as well as quantitative 
results may be sensitive to  mixing effects not reflected in frozen-flow statistics. 

5. Discussion 
The results presented here, in conjunction with previous results (Kerstein 

1991a, b ) ,  serve to identify those aspects of the turbulent mixing process that can be 
adequately represented by a one-dimensional formulation involving discrete, 
instantaneous fluid motions rather than continuous flow. The general inference is 
that properties sensitive to the cumulative effects of many eddies are well 
represented. Properties sensitive to  the predominant influence of a single eddy may 
be inadequately represented if the time development of that  eddy is neglected. This 
point is emphasized in the discussion of the near-field transverse development of the 
plume downstream of a continuous line source, which is influenced primarily by the 
largest eddy convecting the mixing field. 

Apart from this caveat, linear-eddy model results are in overall quantitative 
agreement with the fluctuation statistics of conserved scalars for the configurations 
examined, and in qualitative agreement with statistics of reacting scalars. With 
regard to conserved-scalar mixing, the flapping model applied here to continuous- 
line-source configurations and elsewhere (Kerstein 1991 c) to the scalar mixing layer 
indicates that the principal features of the measurements can be interpreted without 
invoking a mixing process per se. This does not imply that the enhancement of 
mixing by fluid motions is unimportant in these configurations, but rather that the 
statistical quantities being examined may not be the principal indicators of such 
effects. 

I n  that regard, the sensitivity of chemical-kinetic effects to the mixing process has 
been highlighted. First, it was shown that the quantitative accuracy of the linear- 
eddy model with regard to conserved-scalar statistics does not generalize to 
commensurate accuracy with regard to  reacting scalars (though qualitative features 
are still captured). Second, simulation of chemical-kinetic effects in a multi-stream 
mixing configuration yielded predictions whose interpretation is based on detailed 
consideration of mixing mechanisms. Analogous measurements, possibly performed 
by suitable modification of the inlet concentration profile in the apparatus of Bilger 
et al. (1991), would be useful in this regard. Even so simple a variation of that 
experiment as the introduction of unequal reactant concentrations might be 
interesting, since i t  would break the symmetry between the reactants. 

Further insight into mixing mechanisms may be provided by measurements in 
which Re and Sc  as well as Da are varied for a given inlet concentration profile. In  
particular, the selection of reactants with much different molecular diffusivities 
would introduce differential molecular diffusion effects, of practical importance in 
many applications but difficult to incorporate in conventional modelling approaches. 
All these aspects are addressed by the linear-eddy model (Kerstein 1989, 1990). 

Additional measurements may also aid in interpreting the observation that the 
linear-eddy model yields more accurate predictions of species correlation statistics 
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than of concentration fluctuations of individual species, both in non-reacting and 
reacting cases. If this is a robust feature, a model may prove to be a reliable predictor 
of reaction rates in turbulent flows. 

Apart from the question of model validation, the data comparisons presented here 
indicate that a systematic correspondence can be established between the salient 
features of species concentration statistics measured in various turbulent plug flows 
and the inlet concentration profiles and chemical reaction mechanisms in those flows. 
Turbulent-reacting-flow modelling based on a reduced description of the flow field 
can succeed only to the extent that species evolution is governed by the inlet 
concentration profiles, reaction mechanisms, and gross features of the flow rather 
than depending on configuration-specific details of the flow field. 

The author would like to thank R. W. Bilger, G. KosLly and Z. Warhaft for 
helpful discussions. This research was supported by the Division of Chemical 
Sciences, Office of Basic Energy Sciences, US Department of Energy. 

Appendix. Flapping model of scalar fluctuation statistics 
In a companion paper (Kerstein 1991c), a flapping model motivated by Gifford’s 

(1959) fluctuating plume model is formulated for turbulent mixing fields with planar 
symmetry, and predictions are compared t o  fluctuation statistics measured in scalar 
mixing layers. Here, the model is applied to the single-line-source and two-line- 
source configurations considered in $4. 

Single-point scalar fluctuation statistics in a transverse plane at given x’ are 
assumed to reflect the flapping of a scalar concentration profile of fixed functional 
form ~ ( y ) .  In the case of two line sources emitting species A and B respectively, two 
profiles xA(y) and xe(y) are specified. Flapping, i.e. rigid displacement of the entire 
concentration field, is assumed to induce a Gaussian distribution of displacements $ 
of that field. The distribution of 8 is assumed to  have zero mean, and its standard 
deviation m is treated as an adjustable parameter. 

For each source, the fixed profile is assumed to be Gaussian with zero mean and 
standard deviation cr = (2D,t)$, where t = x’/Uis the elapsed time for plume growth. 
(The Gaussian assumption implies that the integral of the profile over y has been 
normalized to unity, an assumption that is convenient but not essential.) This profile 
may be regarded as a gross characterization of the concentration field at  x‘ referenced 
to its instantaneous centroid. The assumed expression for cr is based on a turbulent 
diffusivity picture valid only in the far field, hence the failure of the model in the near 
field, noted in $4.1. (The underlying mechanism is in fact better justified in the near- 
field convective regime of plume growth than in the far-field turbulent-diffusive 
regime. The present formulation addresses the latter regime for purposes of 
comparison to linear-eddy results.) As in linear-eddy simulations, the value of D, is 
assigned based on flow-field conditions at  the source, omitting any variation farther 
downstream. 

The deviation of the instantaneous centroid from its mean location is characterized 
by the random displacement 8. It is assumed, somewhat arbitrarily, that the r.m.8. 
displacement m is independent of x‘, with plume growth effects subsumed in the x’- 
dependence of cr. This arbitrariness reflects the artificiality of the underlying 
mechanistic picture, relying solely on rigid displacements to generate concentration 
fluctuations. 

Based on these assumptions, the nth moment of concentration at  a given location 
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(x‘, y‘) relative to a given source is obtained by integrating x”(y’-$) over the p.d.f. 
of displacements 8. Thus, 

Evaluation of the integral gives 

where u = (2D,x’/U)i. Various quantities of interest are obtained using (A 2), e.g. 
the r.m.s. fluctuation c’(x’, y’) = [(c2(x’, y’)) - (c(x’, y’))2]t plotted in figures 13-15. 
The expression 

c’(2’, O) / ( c (x ’ ,  0)) = [ [;;;;:):,;- l]t 

is obtained for the centreline fluctuation intensity plotted in figures 9 and 10. 
Evaluation of the correlation coefficient of A and B in the two-line-source 

configuration requires, in addition to (A 2), the cross-moment (cA(x’, y) cB(x’, y)), 
where y is the transverse coordinate referenced to the line midway between the 
sources. For source separation d,  xA(y) and x B ( y )  are both assumed to be Gaussian, 
with standard deviation B,  but with respective means $i and -g. Integration of 
the product xA(y-g)xe(y-g)  over the p.d.f. of displacements g gives 

(A 4) 
Evaluation of the integral gives 

(y+#)2+(y-#)2+(dm/cr)z 
2(a2+2m2) 

2 d [  1 + 2(m/a)2]f I .  (A51 (cA(x’, y) cB(x’, y)) = 

The correlation coefficient is expressed in terms of the foregoing results as 

This expression is used to compute the flapping-model curves of figures 16 and 17. 
Evaluating this expression for y = 0 in the limit x’+ co (i.e. (T+ co), the flapping- 

model result for the far-field asymptote of the centreline correlation coefficient is 

2m2 - d2 
2m2 + d2 ’ p(m,  0) = 

Taking m = 2 . 4 4 ~ ~ )  based on the fit to  the linear-eddy centreline fluctuation intensity 
(figure 10) for x,/M = 52, this gives p(co,O) = 0.96, 0.48, and -0.70 for the cases 
d/Z(z,) = 0.5, 2, and 8 respectively. The results of this simple analysis agree 
surprisingly well with far-field measurements, plotted in figure 16, for the 
corresponding cases. The mechanistic basis of the good agreement of this and other 
flapping-model predictions with experimental results is not yet clear. 
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